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Abstract:  The aim of this paper is to study the symmetry properties of solutions  of bi-harmonic differential equations of the type  

∆𝟐 𝒖 +  𝜶 𝒖 = 𝟎  
and  

∆𝟐 𝒖 +   𝒇(𝒖) = 𝟎           𝒊𝒏          𝛀 ⊂  𝑹𝟐  
We employ the method of moving planes, which is based on the Maximum principles in bounded domains  to obtain the result of 

symmetry of solutions of the bi-harmonic problems. 

 

Index Terms – Moving Plane Method, Symmetry, Bi-harmonic equations, Maximum Principles. 

  

I. INTRODUCTION 

In recent years, a lot of interest has been shown in the study of symmetry properties of solutions of nonlinear elliptic equations, 

reflecting the symmetry of the domain. Linear elliptic equations arise in several models describing various phenomena in the 

applied sciences, Maximum principles have been some of the most useful properties used to solve a wide range of problems in the 

study of partial differential equations over the years. Starting from the basic fact from calculus that if a function f(x) satisfies 

𝑓′′  > 0 on an interval [a , b], then it can only achieve its maximum on the boundary of that interval. For partial differential 

equations, the same idea allows to draw very useful conclusions from the properties of the solutions and the domain of a given 

problem. We will look over some results such as the Hopf Maximum Principle and its generalization, approximations and 

uniqueness of solution for elliptic operators. 

It is well known that a classical tool to study this question is the moving plane method which goes back to Alexandrov 

and Serrin [8] and was successfully used by Gidas-Ni-Nirenberg in the famous paper [2] to prove the radial symmetry of positive 

solutions to (1.1) when B is a ball and f has some monotonicity in the radial variable. Since the last four decades or so, "  the 

method of moving planes" has been numerous applications in studying non  linear partial differential equations See [1 ,  6 , 7, 10 

,11, 12 , 13]. It can be used to prove symmetry of solutions. It is an important goal in mathematical analysis to establish 

symmetry properties of solutions of differential equations both from a theoretical point of  view and for the applications.  

To prove the symmetry J. Serrin introduced the method of  moving plane in the differential equations, which has been 

previously used by A. D. Alexandrov in differential geometry. After some years the same method was employed by Gidas, Ni and 

Nirenberg to obtain the symmetry results and monotonicity for positive solutions  of nonlinear elliptic equations. Moving plane 

method has been improved and simplified by Berestycki and Nirenberg in [14] with the aid of maximum principle in small omain. 

After  that many other results followed with different operators, different boundary conditions, different geometries. In his paper 

[5] D. B. Dhaigude proved the Maximum principles for fourth order semilinear elliptic equations; He also stated result by 

Dunninger which we are now going to use. [4] Author D P Patil studied elliptic boundary value problems. 

In this paper, we will denote an open bounded domain in RN with C1 boundary. We will say that  is strictly convex if for 

all 𝑥;  𝑦 ∈ Ω  and for all  𝑡 ∈ ( 0 , 1),  ( 1 − 𝑡)𝑥 + 𝑡𝑦 ∈ Ω  Remark that some symmetry results for solutions of elliptic partial . 

 In section (2) we state the theorem and the preliminary results and statements of main theorems. In section (3) we state and 

prove some useful lemmas required to prove the theorem 2.4. We prove the theorem for equation 

Δ2𝑢 +  𝛼 𝑢 = 0. 

 In section (4) we state and prove some useful lemmas required to prove the theorem 2.5, we prove the theorem for equation  

Δ2𝑢 +  𝑓( 𝑢) = 0. 

2. Preliminaries and Main Result: 

Before proceeding to the statement of our main result we shall set forth some preliminaries and hypotheses. 

Theorem 2.1 [9] Let 𝑢 ∈  𝐶4(Ω) ∩  𝐶2(Ω̅) be a non constant solution of  

 Δ2𝑢 +  𝛼 𝑢 = 0        Ω ⊂  𝑅𝑛 , 𝛼 ∈ 𝑅                                                                                          2.1.                           

                                          𝚫 𝒖 = 𝟎        𝝏 𝛀                                                                                                         𝟐. 𝟐    
then  u satisfies the maximum principle. 

Theorem 2.2 [Dunninger (3)] The non constant solution u of  
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                         Δ2𝑢 +  𝐶 𝑢 = 0       𝐶 > 0    𝑖𝑛    Ω ⊂  𝑅𝑛                                                                                         .                  
  

        𝚫 𝒖 = 𝟎        𝝏 𝛀                                                                             
Satisfies the inequality 

|𝑢(𝑥)| ≤ |𝑢(𝑥0)|                                  𝑥 ∈  Ω̅                                                 
for some point 𝑥0  on the boundary 𝜕Ω    𝑜𝑓 Ω. 
 

Theorem 2.3:[ Serrin [7]] Let u = 𝑢(𝑥1 , 𝑥2 , 𝑥3 , … . . , 𝑥𝑛 ) be a non-constant solution of  

  

            Δ2𝑢 +  𝛼 𝑢 = 0                                                                                                           2.3.  

where 𝛼  is positive constant and 𝑓(𝑢)  is positive non decreasing, differentiable function; and if Δ 𝑢 = 0  on 𝜕 Ω , then u 

attains  its maximum on 𝝏 𝛀. 

 

Theorem 2.4  Let 𝑢 ∈  𝐶4(Ω) ∩  𝐶2(Ω̅) be a non constant solution of  

    Δ2𝑢 +  𝛼 𝑢 = 0                     |𝛼| < 1 ,   𝛼 ∈ 𝑅         𝑖𝑛 Ω ⊂  𝑅𝑛                                         2.4.                           

                                          𝚫 𝒖 = 𝟎    𝒐𝒏    𝝏 𝛀                                                                                    𝟐. 𝟓 

                       𝑢(𝑥) → 0           𝑎𝑠       |𝑥| →  ∞                                                                                  2.6 

Define  𝑈(𝑟) = sup{(𝑢): |𝑥| ≥ 𝑅} 

Φ (𝑟) = 1   𝐵(𝑟) = { 𝑥 ∈  𝑅𝑛 ∶ |𝑥| <  𝑟0} 

Assume that there exists a positive function w on |𝑥| ≥  𝑅0  for some 𝑅0 > 0  satisfying  

                      ∆2𝑢 + Φ(|𝑥|)𝑤 ≤ 0               𝑖𝑛    |𝑥| >  𝑅0                                                                             2.7  
                        ∆ 𝑢 = 0                     𝑜𝑛  |𝑥| >  𝑅0                                                                                              2.8  

                         lim
|𝑥|→∞

𝑈(|𝑥|)

𝑤(𝑥)
   = 0                                                                                                      2.9 

Then u must be radially symmetric about some point 𝑥0  ∈  𝑅𝑛   and 𝑢𝑟  ≤ 0  𝑓𝑜𝑟  𝑅0  ≥ 0 

 

We shall prove this theorem in section (3). 

 

Theorem 2.5  Let 

           Δ2𝑢 +  𝑓( 𝑢) = 0                𝑖𝑛 Ω ⊂  𝑅𝑛                                                            2.10 

                              𝚫 𝒖 = 𝟎    𝒐𝒏    𝝏 𝛀                                                                                          𝟐. 𝟏𝟏 

                       𝑢(𝑥) → 0           𝑎𝑠       |𝑥| →  ∞                                                                             2.12 

Assume that f(u) is positive non decreasing and differentiable function. 

Let 𝑢 ∈  𝐶4(Ω) ∩  𝐶2(Ω̅) 

Define  𝑈(𝑟) = sup{(𝑢): |𝑥| ≥ 𝑅} 

Then u must be radially symmetric about some point 𝑥0  ∈  Ω  and 𝑢𝑟  ≤ 0  𝑓𝑜𝑟  𝑟 > 0 

We shall prove this theorem in section (4). 

Before proceeding to the main theorems we shall set forth some preliminaries and hypothesis. 

 

3. Lemmas and Proof of theorem 2.4 

 
Let 𝜆 > 0 be a real number.   

Define   𝑇𝜆  = { 𝑥 ∶  𝑥 = (𝑥1 , 𝑥2 , 𝑥3 , … , 𝑥𝑛) : 𝑥1 =  𝜆 }   which is the plane perpendicular to x1 axis .  We will move this plane 

continuously normal to itself to new position till it begins to intersect the region Ω . After that point the plane advances in 

Ω   along x1  - axis and cut off cap ∑𝜆  ; which is the portion of Ω , and lies in the same side of the plane    𝑇𝜆 as the original plane 

T. Let 𝑥𝜆 = ( 2𝜆 −  𝑥1 , 𝑥2 , 𝑥3 , … , 𝑥𝑛) be the reflection of the point  𝑥 = (𝑥1 , 𝑥2 , 𝑥3 , … , 𝑥𝑛) about the plane     𝑇𝜆 .   

Define  𝑉𝜆 (𝑥) =   𝑢(𝑥) − (𝑢(𝑥)𝜆). 

We have |𝑥𝜆| ≥ |𝑥|  and  𝑢(𝑥) = 𝑢  (𝑥1 , 𝑥2 , 𝑥3 , … , 𝑥𝑛) , 𝑢(𝑥𝜆) = 𝑢( 2𝜆 − 𝑥1 , 𝑥2 , 𝑥3 , … , 𝑥𝑛) 

By simple calculations we can obtain 

∆2𝑢(𝑥𝜆)  =  ∆2𝑢(𝑥) 

Lemma 3.1 Let 𝝀 > 0 then  𝑽𝝀 satisfies ∆2 𝑽𝝀 +  𝑪𝝀(𝒙)𝑽𝝀  =   𝟎   in  ∑𝜆   where  𝑪𝝀(𝒙) = 𝜶 

Proof: We have |𝑥𝜆| ≥ |𝑥| for 𝑥 ∈  ∑𝜆 

Also 

                                                                                      ∆2𝑢(𝑥) +  𝛼 𝑢(𝑥) = 0                                                                 3.1 

𝑢(𝑥𝜆) satisfies the same equation  that u(x) does 

                                                                           ∆2𝑢 (𝑥𝜆) +  𝛼 𝑢 (𝑥𝜆) = 0                                                             3.2 

Subtracting 

                                                         0 =    [∆2𝑢(𝑥) +  𝛼 𝑢(𝑥)] −  [ ∆2𝑢 (𝑥𝜆) +  𝛼 𝑢 (𝑥𝜆)] 
                                                             =    [∆2𝑢(𝑥) −  ∆2𝑢 (𝑥𝜆)] − [ 𝛼 𝑢(𝑥) −  𝛼 𝑢 (𝑥𝜆)] 

 =    ∆2(𝑢(𝑥) −  𝑢 (𝑥𝜆)) −  𝛼 (𝑢(𝑥) −   𝑢 (𝑥𝜆)) 
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0 =  ∆2 𝑽𝝀 +   𝑪𝝀(𝒙)𝑽𝝀(𝒙) 

where 𝑪𝝀(𝒙) = 𝜶   bounded.                                                                                                                                                □ 

 

Define Λ = { 𝜆 ∈ ( 0 , ∞ ):  𝑽𝝀(𝒙) >  0    𝑖𝑛  ∑𝜆} 

 

Lemma 3.2  Let 𝝀 > 0 . If  𝑽𝝀 > 0 on  ∑𝜆 ∩ 𝐵0
̅̅ ̅ then 𝜆 ∈ Λ. 

Proof: Let 𝝀 > 0  

∴ 𝜆 ∈ ( 0 , ∞ )  and   𝑽𝝀 > 0 on  ∑𝜆 ∩ 𝐵0
̅̅ ̅  .     

By Lemma 3.1 

∆2 𝑽𝝀(𝒙) +  𝑪𝝀(𝒙)𝑽𝝀(𝒙) = 𝟎       𝒊𝒏    ∑𝜆\𝐵0
̅̅ ̅ 

                                          𝑽𝝀(𝒙) > 0      𝑜𝑛   𝜕(∑𝜆\𝐵0
̅̅ ̅)  

Since U( r  ) is non-increasing we have  

                                               0 ≤ 𝑢(𝑥𝜆) +  𝑡 (𝑢(𝑥) −  𝑢(𝑥𝜆) )  ≤ 𝑈 ( 𝑟 )   for 0 ≤ 𝑡 ≤ 1. 

We have 𝐶𝜆 ( 𝑥) =  ∫ 𝛼 𝑑𝑡   =   𝛼 
1

0
  = 1 ≤   Φ (|𝑥|) 

From      ∆2 𝑤 +  Φ ( |𝑥|)𝑤 ≥ 0  in  | 𝑥|  ≥   𝑅0  
      ∆ 𝑤 = 0      on | 𝑥| =   𝑅0 

The positive function w satisfies the equation 

      ∆2 𝑤 +  Φ ( |𝑥|)𝑤 ≤ 0  in  ∑𝜆\𝐵0
̅̅ ̅ 

      ∆ 𝑤 = 0      on   ∑𝜆\𝐵0
̅̅ ̅ 

Hence by maximum principle we have  

    𝑽𝝀(𝒙) > 0   in ∑𝜆\𝐵0
̅̅ ̅. 

∴ 𝜆 ∈ Λ .                                                                                                                                                                                         □ 
 

Lemma 3.3  Let  𝜆 ∈ Λ then 
𝜕𝑢

𝜕 𝑥1
 < 0   on 𝑇𝜆 . 

Proof: By lemma [3.1] we have  
∆2 𝑽𝝀(𝒙) +   𝜶 𝑽𝝀(𝒙) = 𝟎       𝒊𝒏    ∑𝜆 

                                          𝑽𝝀(𝒙) > 0      𝑜𝑛   𝜕(∑𝜆)  
But       𝑽𝝀(𝒙) = 𝟎      𝒐𝒏   𝑇𝜆 

 We have 
𝜕𝑉𝜆

𝜕𝑥1
 < 0   on  𝑇𝜆. 

By Hopf boundary lemma, 
𝜕𝑢

𝜕𝑥1
=  

1

2
 
𝜕𝑉𝜆

𝜕𝑥1
 < 0  on 𝑇𝜆.                                                                                                                                                                    □ 

 
Proof of theorem 2.4 

Let u(x) is positive non constant solution of boundary value problem [ 2.4  , 2.5] and lim
|𝑥|→∞

𝑢(𝑥) = 0  then there exist          𝑅1 >

 𝑅0 such that  

max{ 𝑢(𝑥): |𝑥| >  𝑅1   } < min{ 𝑢(𝑥): |𝑥| ≤ 𝑅0   }  
where  𝑅0  is the constant taken in the theorem. We prove the theorem in following steps. 

 Step 1: To prove [𝑹𝟏 , ∞ )  ⊂  𝚲  . 
Let   𝜆 ∈ [𝑹𝟏 , ∞ ) . 

∴  𝜆 ≥   𝑅1   and we have   𝐵0
̅̅ ̅ ⊂  ∑𝜆. 

  𝑽𝝀(𝒙) > 0  in 𝐵0
̅̅ ̅. 

By lemma 3.2  𝜆 ∈ Λ. 

∴  [𝑹𝟏 , ∞ )  ⊂  𝚲 . 

 

Step 2:  Let  𝝀𝟎  ∈ 𝚲.  To prove that  there exist 𝝐 > 0   such that (𝜆0 −  𝜖  ,   𝜆0 ]  ⊂  Λ   . 
We shall  prove this by method of contradiction. If possible suppose that there exist an increasing sequence, {𝜆𝑖} , i = 1 , 2 , 3 , …. 

Such that 𝜆𝑖 ∉  Λ  and  𝜆𝑖  →   𝜆0  as 𝑖 → ∞.  By converse of the lemma [3.2] we have a sequence  {𝑥𝑖} , i = 1 , 2 , 3 , …. 

Such that 𝑥𝑖   ∈   ∑𝜆 ∩ 𝐵0
̅̅ ̅  and 𝑉𝜆𝑖

(𝑥𝑖  ) ≤ 0. A subsequence which we call again  {𝑋𝑖} , converges to some point                    𝑥0 ∈

 ∑𝜆0
̅̅ ̅̅ ̅ ∩  𝐵0

̅̅ ̅ .  

Then  𝑉𝜆0  ≤ 0. 

Since 𝑉𝜆0  >  0   in  ∑𝜆0, we must have 𝑥0  ∈  𝑇𝜆0 . 

By mean value theorem, we observe that there exists a point 𝑦𝑖   satisfying 
𝜕𝑢

𝜕𝑥1
 ( 𝑦𝑖) ≥ 0 , on the straight segment joining 𝑥𝑖 to 

𝑥𝑖
𝜆𝑖 

 for  i =  1 , 2 , 3 , . . . . 

Since 𝑦𝑖  →  𝑥0   as 𝑖 → ∞, we have 
𝜕𝑢

𝜕𝑥1
 ( 𝑥0) ≥ 0 . 

On the other hand since  𝑥0  ∈  𝑇𝜆0 we have  
𝜕𝑢

𝜕𝑥1
 ( 𝑥0) < 0. 

By lemma [ 3.3] this is a contradiction and step 2 is established. 
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Step 3:  To prove either statement (A) or statement ( B ) holds. 

( A ) 𝑉𝜆 (𝑥)  >  0 for 𝜆1 > 0  and  
𝜕𝑢

𝜕𝑥1
 < 0  on  𝑇𝜆 for 𝜆 > 𝜆1 . 

( B ) 𝑉𝜆 (𝑥) >  0 in ∑0 and  
𝜕𝑢

𝜕𝑥1
 < 0  on  𝑇𝜆 for 𝜆 > 𝜆1. 

Define 𝜆1 = inf{𝜆 > 0 ∶ ( 𝜆 , ∞ )  ⊂  Λ} then either 𝜆1 > 0 or 𝜆1 = 0 . 

Case 1   𝜆1 > 0 

We have  𝑉𝜆1
 (𝑥) =   𝑢(𝑥) − (𝑢(𝑥)𝜆1) 

From the continuity of the function u, we have  

 

                                                                                        𝑉𝜆1
 (𝑥) > 0          𝑖𝑛        ∑𝜆1

 . 

Hence by strong maximum principle we have that either    𝑉𝜆1
 (𝑥) > 0    𝑖𝑛    ∑𝜆1

 or      𝑉𝜆1
 (𝑥) = 0     𝑖𝑛    ∑𝜆1

 

Suppose that  𝑉𝜆1
 (𝑥) > 0   𝑖𝑛   ∑𝜆1

 , then 𝜆1  ∈  Λ. 

From step 2 there exist 𝜖 > 0  such that  ( 𝜆1 –  𝜖 ,  𝜆1 ]  ⊂  Λ. 

This contradicts to the definition of  𝜆1. 
∴      𝑉𝜆1

 (𝑥) = 0     𝑖𝑛    ∑𝜆1
 

∴ 𝑢(𝑥) =  𝑢(𝑥𝜆1)       𝑖𝑛    ∑𝜆1
 

Since  [ 𝜆1 , ∞)  ⊂ Λ  we have  
𝜕𝑢

𝜕𝑥1
 < 0  on   𝑇𝜆 for > 𝜆1 . By lemma [3.3] 

Thus we get statement (A). 

Case 2  𝜆1 = 0 

Since u is continuous and lim
|𝑥|→∞

𝑢(𝑥) = 0  we have  𝑢(𝑥) ≥ 𝑢(𝑥0)       𝑖𝑛    ∑0  

By lemma [3.3] 
𝜕𝑢

𝜕𝑥1
 < 0  on   𝑇𝜆 for 𝜆 > 0. 

Thus statement  (B) occurs. 

 If statement (B) occurs in step 3 we can repeat the previous steps 1, 2, and 3 for the opposite 𝑋1 direction about some plane  

 𝑥1 = 𝜆1 < 0     or    u(x) < u(𝑥0) in  ∑0   

Therefore 

 u(x) < u(𝑥0) in  ∑0   

Therefore, u must be radially symmetric in 𝑋1 direction about some plane and  strictly decreasing away from the plane. 

Since we can place  𝑋1axis along any direction, we can conclude that u is radially symmetric. 

 

4. Proof of theorem 2.5 

 
Before proving the theorem we shall prove some lemmas which are required in the proof of the theorem. 

 Lemma 4.1 Let 𝜆 > 0 then  𝑉𝜆 satisfies  ∆2 𝑽𝝀 +  𝑪𝝀(𝒙)𝑽𝝀  =   𝟎   in  ∑𝜆   where                                      𝑪𝝀(𝒙) =

 ∫ 𝒇𝒖  ( 𝒖(𝒙) +  𝒕 (𝒖(𝒙) −  𝒖(𝒙𝝀)))  𝒅𝒕
𝟏

𝟎
 

Proof : Let 

                                                    Δ2𝑢 +  𝑓( 𝑢) = 0 

and (𝑥) = 𝑢  (𝑥1 , 𝑥2 , 𝑥3 , … , 𝑥𝑛) . Let 𝜆 > 0 be a real number.   

Define   𝑇𝜆  = { 𝑥 ∶  𝑥 = (𝑥1 , 𝑥2 , 𝑥3 , … , 𝑥𝑛) : 𝑥1 =  𝜆 }   which is the plane perpendicular to x1 axis .  We will move this plane 

continuously normal to itself to new position till it begins to intersect the region Ω . After that point the plane advances in 

Ω   along x1  - axis and cut off cap ∑𝜆  ; which is the portion of Ω , and lies in the same side of the plane    𝑇𝜆 as the original plane 

T. Let 𝑥𝜆 = ( 2𝜆 −  𝑥1 , 𝑥2 , 𝑥3 , … , 𝑥𝑛) be the reflection of the point  𝑥 = (𝑥1 , 𝑥2 , 𝑥3 , … , 𝑥𝑛) about the plane     𝑇𝜆 .   

Define  𝑉𝜆 (𝑥) =   𝑢(𝑥) − (𝑢(𝑥)𝜆). 

We have |𝑥𝜆| ≥ |𝑥|  and  𝑢(𝑥) = 𝑢  (𝑥1 , 𝑥2 , 𝑥3 , … , 𝑥𝑛) , 𝑢(𝑥𝜆) = 𝑢( 2𝜆 − 𝑥1 , 𝑥2 , 𝑥3 , … , 𝑥𝑛) 

By simple calculations we can obtain 

∆2𝑢(𝑥𝜆)  =  ∆2𝑢(𝑥) 

𝑢(𝑥𝜆) satisfies the same equation  that u(x) does 

                                                                           ∆2𝑢 (𝑥𝜆) +  𝑓( 𝑢 (𝑥𝜆)) = 0                                                              

On subtracting we obtain 

                                                         0 =    [∆2𝑢(𝑥) +  𝑓( 𝑢(𝑥))] −  [ ∆2𝑢 (𝑥𝜆) +  𝑓( 𝑢 (𝑥𝜆))] 

                                                             =    [∆2𝑢(𝑥) −  ∆2𝑢 (𝑥𝜆)] − [ 𝑓( 𝑢(𝑥)) −  𝑓 ∗ ( 𝑢 (𝑥𝜆))] 

 =    ∆2(𝑢(𝑥) −  𝑢 (𝑥𝜆)) − 
𝑓 (𝑢(𝑥)) −   𝑓 (𝑢 (𝑥𝜆))

𝑢(𝑥) −  𝑢(𝑥𝜆)
[ 𝑢(𝑥) −  𝑢(𝑥𝜆)] 

0 =  ∆2 𝑽𝝀 +   𝑪𝝀(𝒙)𝑽𝝀(𝒙) 

where 𝑪𝝀(𝒙) =  
𝑓 (𝑢(𝑥))−  𝑓(𝑢 (𝑥𝜆))

𝑢(𝑥)− 𝑢(𝑥𝜆)
 =  ∫ 𝑓𝑢(𝑢(𝑥𝜆) +  𝑡[𝑢(𝑥) −  𝑢(𝑥𝜆)])𝑑𝑡           

1

0
 

From Δ2 𝑤 + 𝑤 ≥ 0  in |𝑥| ≥  𝑅0 
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∆ 𝑤 = 0 on |𝑥| =  𝑅0  
The positive non decreasing function u satisfies the equation  

 

∆2 𝒘 +   𝑪𝝀(𝒙)𝒘 ≥ 𝟎   in  ∑𝜆\𝐵0
̅̅ ̅ 

      ∆ 𝑤 = 0      on   ∑𝜆\𝐵0
̅̅ ̅ 

Hence by maximum principle we have  

    𝑽𝝀(𝒙) > 0   in ∑𝜆\𝐵0
̅̅ ̅. 

∴ 𝜆 ∈ Λ .                                                                                                                                                           □ 

 

Lemma 4.2:  Let  > 0 . If  𝑽𝝀 > 0 on  ∑𝜆 ∩ 𝐵0
̅̅ ̅ then 𝜆 ∈ Λ. 

Proof: Let 𝝀 > 0  and   𝑽𝝀 < 0 on  ∑𝜆 ∩ 𝐵0
̅̅ ̅, then by lemma [4.1] and assumptions we have  

∆2 𝑽𝝀(𝒙) +  𝑪𝝀(𝒙)𝑽𝝀(𝒙) = 𝟎       𝒊𝒏    ∑𝜆\𝐵0
̅̅ ̅ 

                                          𝑽𝝀(𝒙) > 0      𝑜𝑛   𝜕(∑𝜆\𝐵0
̅̅ ̅)  

Since U( r  ) is non-increasing we have  

                                               0 ≤ 𝑢(𝑥𝜆) +  𝑡 (𝑢(𝑥) −  𝑢(𝑥𝜆) )  ≤ 𝑈 ( |𝑥| )   for 0 ≤ 𝑡 ≤ 1. 

We have 𝐶𝜆 ( 𝑥) =  ∫  𝑓𝑢 [𝑢(𝑥𝜆) +  𝑡 (𝑢(𝑥) −  𝑢(𝑥𝜆) )] 𝑑𝑡   ≤   ∫ 𝑓𝑢 𝑈(|𝑥|)𝑑𝑡
1

0
 

1

0
  =   Φ (|𝑥|) 𝑖𝑛  ∑𝜆.  

Where Φ (|𝑥| = sup{ 𝑓𝑢 ( 𝑟 , 𝑠 ) ∶ 0  ≤ 𝑠 ≤ 𝑈(𝑟)} 

From      ∆2 𝑤 +  Φ ( |𝑥|)𝑤 ≥ 0  in  | 𝑥|  ≥   𝑅0  
       ∆ 𝑤 = 0      on | 𝑥| =   𝑅0 

The positive non decreasing function w satisfies the equation 

      ∆2 𝑤 +  Φ ( |𝑥|)𝑤 ≤ 0  in  ∑𝜆\𝐵0
̅̅ ̅ 

      ∆ 𝑤 = 0      on   ∑𝜆\𝐵0
̅̅ ̅ 

Hence by maximum principle we have  

    𝑽𝝀(𝒙) > 0   in ∑𝜆 

∴ 𝜆 ∈ Λ .                                                                                                                                                                                      □ 

Lemma 4.3:  Let  𝜆 ∈ Λ then 
𝜕𝑢

𝜕 𝑥1
 < 0   on 𝑇𝜆 . 

Proof: Let  𝜆 ∈ Λ  
∴ 𝜆  ∈ ( 0 , ∞) 

∴ 𝜆 > 0 
 
 
By lemma [4.1] we have  

∆2 𝑽𝝀(𝒙) +  𝑪𝝀(𝒙) 𝑽𝝀(𝒙) ≥ 𝟎       𝒊𝒏    ∑𝜆 

                                          𝑽𝝀(𝒙) > 0      𝑖𝑛   (∑𝜆)  
But       𝑽𝝀(𝒙) = 𝟎      𝒐𝒏   𝑇𝜆 

 We have 
𝜕𝑉𝜆

𝜕𝑥1
 < 0   on  𝑇𝜆. 

By Hopf boundary lemma, 
𝜕𝑢

𝜕𝑥1
=  

1

2
 
𝜕𝑉𝜆

𝜕𝑥1
 < 0  on 𝑇𝜆.                                                                                                                                                                 □            

 

Proof of theorem 2.5:     

 

Let u(x) is positive and   and lim
|𝑥|→∞

𝑢(𝑥) = 0  then there exist          𝑅1 >  𝑅0 such that  

max{ 𝑢(𝑥): |𝑥| >  𝑅1   } < min{ 𝑢(𝑥): |𝑥| ≤ 𝑅0   }  
where  𝑅0  is the constant taken in the theorem. We prove the theorem in following steps. 

 Step 1: To prove [𝑹𝟏 , ∞ )  ⊂  𝚲  .  We shall prove this step by method of contradiction.  

Let   𝜆 ∉ [𝑹𝟎 , ∞ ) . 

∴  𝜆 <   𝑅0   and we note that   𝐵0
̅̅ ̅ ⊂  ∑𝜆. 

Since 𝑢(𝑥) ≤ 𝑢 (𝑥𝜆) we have  

  𝑽𝝀(𝒙) ≤ 0  in 𝐵0
̅̅ ̅. 

Which is a contradiction. 

∴ 𝜆 ∈ Λ. 

∴  [𝑹𝟏 , ∞ )  ⊂  𝚲 . 

 

Step 2:  To prove if   𝝀𝟎  ∈ 𝚲 ,  then  there exist 𝝐 > 0   such that (𝜆0 −  𝜖  ,   𝜆0 ]  ⊂  Λ   . 
Assume to the contrary that there exist an increasing sequence, {𝜆𝑖} , i = 1 , 2 , 3 , …. Such that 𝜆𝑖 ∉  Λ  and  𝜆𝑖  →   𝜆0  as 𝑖 → ∞.  

By converse of the lemma [4.2] we have a sequence  {𝑥𝑖} , i = 1 , 2 , 3 , …. Such that 𝑥𝑖   ∈   ∑𝜆 ∩ 𝐵0
̅̅ ̅  and 𝑉𝜆𝑖

(𝑥𝑖  ) ≥ 0. A 

subsequence which we call again  {𝑋𝑖} , converges to some point                    𝑥0 ∈  ∑𝜆0
̅̅ ̅̅ ̅ ∩  𝐵0

̅̅ ̅ .  

Then  𝑉𝜆0  ≥ 0. 

Since 𝑉𝜆0  >  0   in  ∑𝜆0, we must have 𝑥0  ∈  𝑇𝜆0 . 

http://www.jetir.org/


© 2018 JETIR  August 2018, Volume 5, Issue 8                                      www.jetir.org  (ISSN-2349-5162) 

JETIR1808701 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 420 

 

By mean value theorem, we observe that there exists a point 𝑦𝑖   satisfying  
𝜕𝑢

𝜕𝑥1
 ( 𝑦𝑖) ≥ 0 , on the straight segment joining 𝑥𝑖 to 

𝑥𝑖
𝜆𝑖   for  i =  1 , 2 , 3 , . . . .   Since 𝑦𝑖  →  𝑥0   as 𝑖 → ∞, we have 

𝜕𝑢

𝜕𝑥1
 ( 𝑥0) ≥ 0 . 

On the other hand since  𝑥0  ∈  𝑇𝜆0 we have  
𝜕𝑢

𝜕𝑥1
 ( 𝑥0) < 0. 

By lemma [ 4.3] this is a contradiction and step 2 is established. 

Step 3:  To prove either statement (A) or statement ( B ) holds. 

( A ) 𝑢(𝑥) = 𝑢(𝑥𝜆1) for 𝜆1 > 0  and  
𝜕𝑢

𝜕𝑥1
 < 0  on  𝑇𝜆 for 𝜆 > 𝜆1 . 

( B ) 𝑢(𝑥) > 𝑢(𝑥𝜆1) in ∑0 and  
𝜕𝑢

𝜕𝑥1
 < 0  on  𝑇𝜆 for 𝜆 > 𝜆1. 

Define 𝜆1 = inf  {𝜆 > 0 ∶ ( 𝜆 , ∞ )  ⊂  Λ} then either 𝜆1 > 0 or 𝜆1 = 0 . 

Case 1   𝜆1 > 0 

We have  𝑉𝜆1
 (𝑥) =   𝑢(𝑥) − (𝑢(𝑥)𝜆1) 

From the continuity of the function u, we have  

 

                                                                                        𝑉𝜆1
 (𝑥) > 0          𝑖𝑛        ∑𝜆1

 . 

By lemma [4.1] we have  ∆2 𝑽𝝀(𝒙) +  𝑪𝝀(𝒙)𝑽𝝀(𝒙) ≥  𝟎       𝒊𝒏    ∑𝜆. 

 

Hence by strong maximum principle we have that either    𝑉𝜆1
 (𝑥) > 0    𝑖𝑛    ∑𝜆1

 or      𝑉𝜆1
 (𝑥) = 0     𝑖𝑛    ∑𝜆1

 

Suppose that  𝑉𝜆1
 (𝑥) > 0   𝑖𝑛   ∑𝜆1

 , then 𝜆1  ∈  Λ. 

From step 2 there exist 𝜖 > 0  such that  ( 𝜆1 –  𝜖 ,  𝜆1 ]  ⊂  Λ. 

This contradicts to the definition of  𝜆1. 
∴      𝑉𝜆1

 (𝑥) = 0     𝑖𝑛    ∑𝜆1
 

∴ 𝑢(𝑥) =  𝑢(𝑥𝜆1)       𝑖𝑛    ∑𝜆1
 

Since  [ 𝜆1 , ∞)  ⊂ Λ  we have  
𝜕𝑢

𝜕𝑥1
 < 0  on   𝑇𝜆 for > 𝜆1 . By lemma [4.3] 

Thus we get statement (A). 

Case 2  𝜆1 = 0 

Since u is continuous and lim
|𝑥|→∞

𝑢(𝑥) = 0  we have  𝑢(𝑥) ≥ 𝑢(𝑥0)       𝑖𝑛    ∑0  

By lemma [4.3] 
𝜕𝑢

𝜕𝑥1
 < 0  on   𝑇𝜆 for 𝜆 > 0. 

Thus statement  (B) occurs. 

 If statement (B) occurs in step 3 we can repeat the previous steps 1, 2, and 3 for the opposite 𝑋1 direction about some plane  

 𝑥1 = 𝜆1 < 0     or    u(x) < u(𝑥0) in  ∑0   

Therefore 

 u(x) < u(𝑥0) in  ∑0   

Therefore, u must be radially symmetric in 𝑋1 direction about some plane and strictly decreasing away from the plane. 

Since we can place 𝑋1axis along any direction, we can conclude that u is radially symmetric about origin. 
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